Nuprl Lemma : hd_two_swap_permr
∀T:Type. ∀as:T List. ∀a,a':T.  ([a; [a' / as]] ≡(T) [a'; [a / as]])
Proof
Definitions occuring in Statement : 
permr: as ≡(T) bs
, 
cons: [a / b]
, 
list: T List
, 
all: ∀x:A. B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
permr: as ≡(T) bs
, 
member: t ∈ T
, 
top: Top
, 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
guard: {T}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
txpose_perm: txpose_perm, 
mk_perm: mk_perm(f;b)
, 
perm_f: p.f
, 
pi1: fst(t)
, 
sym_grp: Sym(n)
, 
perm: Perm(T)
, 
subtype_rel: A ⊆r B
, 
less_than: a < b
, 
squash: ↓T
, 
swap: swap(i;j)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
bfalse: ff
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
length_of_cons_lemma, 
istype-void, 
length_wf, 
istype-universe, 
list_wf, 
txpose_perm_wf, 
add_nat_wf, 
length_wf_nat, 
istype-false, 
le_wf, 
nat_properties, 
decidable__le, 
add-is-int-iff, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
false_wf, 
non_neg_length, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
less_than_wf, 
int_seg_wf, 
select_wf, 
cons_wf, 
perm_f_wf, 
int_seg_properties, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
select-cons-hd, 
eqff_to_assert, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
equal_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
select_cons_tl
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
addEquality, 
isectElimination, 
hypothesisEquality, 
natural_numberEquality, 
independent_pairFormation, 
inhabitedIsType, 
universeIsType, 
universeEquality, 
dependent_pairFormation_alt, 
dependent_set_memberEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
applyLambdaEquality, 
setElimination, 
rename, 
unionElimination, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
productElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
lambdaEquality_alt, 
int_eqEquality, 
equalityIsType1, 
productIsType, 
functionIsType, 
applyEquality, 
imageElimination, 
equalityElimination, 
equalityIsType2, 
intEquality, 
instantiate, 
cumulativity, 
productEquality, 
imageMemberEquality
Latex:
\mforall{}T:Type.  \mforall{}as:T  List.  \mforall{}a,a':T.    ([a;  [a'  /  as]]  \mequiv{}(T)  [a';  [a  /  as]])
Date html generated:
2019_10_16-PM-01_00_53
Last ObjectModification:
2018_10_08-AM-10_05_56
Theory : perms_2
Home
Index