Nuprl Lemma : cons_functionality_wrt_permr

T:Type. ∀a,b:T. ∀as,bs:T List.  ((a b ∈ T)  (as ≡(T) bs)  ([a as] ≡(T) [b bs]))


Proof




Definitions occuring in Statement :  permr: as ≡(T) bs cons: [a b] list: List all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] permr: as ≡(T) bs top: Top cand: c∧ B exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False and: P ∧ Q nat: le: A ≤ B less_than': less_than'(a;b) guard: {T} ge: i ≥  sym_grp: Sym(n) perm: Perm(T) subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T conj_perm: conj{p}(q) comp_perm: comp_perm mk_perm: mk_perm(f;b) perm_f: p.f pi1: fst(t) rev_perm: p{n} extend_perm: {n}(p) inv_perm: inv_perm(p) compose: g perm_b: p.b pi2: snd(t) rev_permf: rev_permf(n) extend_permf: extend_permf(pf;n) uiff: uiff(P;Q) subtract: m so_lambda: λ2x.t[x] so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q true: True
Lemmas referenced :  permr_wf list_wf istype-universe length_of_cons_lemma istype-void decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermAdd_wf itermVar_wf itermConstant_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf conj_perm_wf add_nat_wf length_wf_nat istype-false le_wf nat_properties decidable__le intformle_wf int_formula_prop_le_lemma rev_perm_wf extend_perm_wf int_seg_wf length_wf select_wf cons_wf perm_f_wf non_neg_length int_seg_properties less_than_wf decidable__lt intformless_wf int_formula_prop_less_lemma itermMinus_wf itermSubtract_wf int_term_value_minus_lemma int_term_value_subtract_lemma add-member-int_seg1 subtract_wf eq_int_wf equal-wf-T-base bool_wf assert_wf equal-wf-base-T int_subtype_base add-associates minus-add minus-minus minus-one-mul add-swap add-mul-special add-commutes zero-add zero-mul add-zero bnot_wf not_wf set_subtype_base uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot itermMultiply_wf int_term_value_mul_lemma equal_wf squash_wf true_wf select_cons_hd subtype_rel_self iff_weakening_equal select_cons_tl
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis equalityIsType1 inhabitedIsType isectElimination universeEquality sqequalRule isect_memberEquality_alt voidElimination productElimination because_Cache unionElimination equalityTransitivity equalitySymmetry natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality independent_pairFormation dependent_set_memberEquality_alt applyLambdaEquality setElimination rename functionIsType addEquality applyEquality productIsType imageElimination multiplyEquality minusEquality baseClosed intEquality equalityIsType4 equalityElimination imageMemberEquality instantiate

Latex:
\mforall{}T:Type.  \mforall{}a,b:T.  \mforall{}as,bs:T  List.    ((a  =  b)  {}\mRightarrow{}  (as  \mequiv{}(T)  bs)  {}\mRightarrow{}  ([a  /  as]  \mequiv{}(T)  [b  /  bs]))



Date html generated: 2019_10_16-PM-01_00_34
Last ObjectModification: 2018_10_08-AM-10_57_39

Theory : perms_2


Home Index