Nuprl Lemma : cons_functionality_wrt_permr
∀T:Type. ∀a,b:T. ∀as,bs:T List.  ((a = b ∈ T) ⇒ (as ≡(T) bs) ⇒ ([a / as] ≡(T) [b / bs]))
Proof
Definitions occuring in Statement : 
permr: as ≡(T) bs, 
cons: [a / b], 
list: T List, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
permr: as ≡(T) bs, 
top: Top, 
cand: A c∧ B, 
exists: ∃x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
and: P ∧ Q, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
guard: {T}, 
ge: i ≥ j , 
sym_grp: Sym(n), 
perm: Perm(T), 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
less_than: a < b, 
squash: ↓T, 
conj_perm: conj{p}(q), 
comp_perm: comp_perm, 
mk_perm: mk_perm(f;b), 
perm_f: p.f, 
pi1: fst(t), 
rev_perm: ↔p{n}, 
extend_perm: ↑{n}(p), 
inv_perm: inv_perm(p), 
compose: f o g, 
perm_b: p.b, 
pi2: snd(t), 
rev_permf: rev_permf(n), 
extend_permf: extend_permf(pf;n), 
uiff: uiff(P;Q), 
subtract: n - m, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
true: True
Lemmas referenced : 
permr_wf, 
list_wf, 
istype-universe, 
length_of_cons_lemma, 
istype-void, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
conj_perm_wf, 
add_nat_wf, 
length_wf_nat, 
istype-false, 
le_wf, 
nat_properties, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
rev_perm_wf, 
extend_perm_wf, 
int_seg_wf, 
length_wf, 
select_wf, 
cons_wf, 
perm_f_wf, 
non_neg_length, 
int_seg_properties, 
less_than_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
itermMinus_wf, 
itermSubtract_wf, 
int_term_value_minus_lemma, 
int_term_value_subtract_lemma, 
add-member-int_seg1, 
subtract_wf, 
eq_int_wf, 
equal-wf-T-base, 
bool_wf, 
assert_wf, 
equal-wf-base-T, 
int_subtype_base, 
add-associates, 
minus-add, 
minus-minus, 
minus-one-mul, 
add-swap, 
add-mul-special, 
add-commutes, 
zero-add, 
zero-mul, 
add-zero, 
bnot_wf, 
not_wf, 
set_subtype_base, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
select_cons_hd, 
subtype_rel_self, 
iff_weakening_equal, 
select_cons_tl
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
equalityIsType1, 
inhabitedIsType, 
isectElimination, 
universeEquality, 
sqequalRule, 
isect_memberEquality_alt, 
voidElimination, 
productElimination, 
because_Cache, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
setElimination, 
rename, 
functionIsType, 
addEquality, 
applyEquality, 
productIsType, 
imageElimination, 
multiplyEquality, 
minusEquality, 
baseClosed, 
intEquality, 
equalityIsType4, 
equalityElimination, 
imageMemberEquality, 
instantiate
Latex:
\mforall{}T:Type.  \mforall{}a,b:T.  \mforall{}as,bs:T  List.    ((a  =  b)  {}\mRightarrow{}  (as  \mequiv{}(T)  bs)  {}\mRightarrow{}  ([a  /  as]  \mequiv{}(T)  [b  /  bs]))
Date html generated:
2019_10_16-PM-01_00_34
Last ObjectModification:
2018_10_08-AM-10_57_39
Theory : perms_2
Home
Index