Nuprl Lemma : rev_perm_wf
∀n:ℕ. (↔p{n} ∈ Sym(n))
Proof
Definitions occuring in Statement :
rev_perm: ↔p{n}
,
sym_grp: Sym(n)
,
nat: ℕ
,
all: ∀x:A. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
rev_perm: ↔p{n}
,
sym_grp: Sym(n)
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
nat: ℕ
,
implies: P
⇒ Q
,
tidentity: Id{T}
,
inv_funs: InvFuns(A;B;f;g)
,
and: P ∧ Q
Lemmas referenced :
nat_wf,
mk_perm_wf_a,
int_seg_wf,
rev_permf_wf,
rev_permf_order_2
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
lambdaFormation_alt,
cut,
sqequalHypSubstitution,
hypothesis,
universeIsType,
introduction,
extract_by_obid,
dependent_functionElimination,
thin,
isectElimination,
natural_numberEquality,
setElimination,
rename,
because_Cache,
hypothesisEquality,
independent_functionElimination,
independent_pairFormation
Latex:
\mforall{}n:\mBbbN{}. (\mrightleftharpoons{}p\{n\} \mmember{} Sym(n))
Date html generated:
2019_10_16-PM-00_59_37
Last ObjectModification:
2018_10_08-AM-09_20_32
Theory : perms_1
Home
Index