Nuprl Lemma : rev_perm_wf

n:ℕ(p{n} ∈ Sym(n))


Proof




Definitions occuring in Statement :  rev_perm: p{n} sym_grp: Sym(n) nat: all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  rev_perm: p{n} sym_grp: Sym(n) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: implies:  Q tidentity: Id{T} inv_funs: InvFuns(A;B;f;g) and: P ∧ Q
Lemmas referenced :  nat_wf mk_perm_wf_a int_seg_wf rev_permf_wf rev_permf_order_2
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation_alt cut sqequalHypSubstitution hypothesis universeIsType introduction extract_by_obid dependent_functionElimination thin isectElimination natural_numberEquality setElimination rename because_Cache hypothesisEquality independent_functionElimination independent_pairFormation

Latex:
\mforall{}n:\mBbbN{}.  (\mrightleftharpoons{}p\{n\}  \mmember{}  Sym(n))



Date html generated: 2019_10_16-PM-00_59_37
Last ObjectModification: 2018_10_08-AM-09_20_32

Theory : perms_1


Home Index