Nuprl Lemma : rev_perm_wf
∀n:ℕ. (↔p{n} ∈ Sym(n))
Proof
Definitions occuring in Statement : 
rev_perm: ↔p{n}
, 
sym_grp: Sym(n)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
rev_perm: ↔p{n}
, 
sym_grp: Sym(n)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
tidentity: Id{T}
, 
inv_funs: InvFuns(A;B;f;g)
, 
and: P ∧ Q
Lemmas referenced : 
nat_wf, 
mk_perm_wf_a, 
int_seg_wf, 
rev_permf_wf, 
rev_permf_order_2
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation_alt, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
universeIsType, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesisEquality, 
independent_functionElimination, 
independent_pairFormation
Latex:
\mforall{}n:\mBbbN{}.  (\mrightleftharpoons{}p\{n\}  \mmember{}  Sym(n))
Date html generated:
2019_10_16-PM-00_59_37
Last ObjectModification:
2018_10_08-AM-09_20_32
Theory : perms_1
Home
Index