Nuprl Lemma : rev_permf_wf

n:ℕ(rev_permf(n) ∈ ℕn ⟶ ℕn)


Proof




Definitions occuring in Statement :  rev_permf: rev_permf(n) int_seg: {i..j-} nat: all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T rev_permf: rev_permf(n) int_seg: {i..j-} uall: [x:A]. B[x] nat: lelt: i ≤ j < k and: P ∧ Q guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop:
Lemmas referenced :  subtract_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf decidable__lt lelt_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule lambdaEquality dependent_set_memberEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis natural_numberEquality hypothesisEquality independent_pairFormation productElimination dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}n:\mBbbN{}.  (rev\_permf(n)  \mmember{}  \mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n)



Date html generated: 2018_05_22-AM-07_44_33
Last ObjectModification: 2018_05_19-AM-08_33_20

Theory : perms_1


Home Index