Nuprl Lemma : rev_permf_order_2

n:ℕ((rev_permf(n) rev_permf(n)) Id ∈ (ℕn ⟶ ℕn))


Proof




Definitions occuring in Statement :  rev_permf: rev_permf(n) compose: g identity: Id int_seg: {i..j-} nat: all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  identity: Id rev_permf: rev_permf(n) compose: g all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T guard: {T} nat: int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop:
Lemmas referenced :  nat_wf int_seg_wf lelt_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_le_lemma int_formula_prop_and_lemma intformle_wf intformand_wf decidable__le int_formula_prop_wf int_term_value_constant_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermConstant_wf itermVar_wf itermSubtract_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt subtract_wf decidable__equal_int nat_properties int_seg_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule lambdaFormation cut functionExtensionality lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis productElimination dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll dependent_set_memberEquality independent_pairFormation because_Cache

Latex:
\mforall{}n:\mBbbN{}.  ((rev\_permf(n)  o  rev\_permf(n))  =  Id)



Date html generated: 2016_05_16-AM-07_30_25
Last ObjectModification: 2016_01_16-PM-10_06_02

Theory : perms_1


Home Index