Nuprl Lemma : extend_perm_wf

n:ℕ. ∀p:Sym(n).  (↑{n}(p) ∈ Sym(n 1))


Proof




Definitions occuring in Statement :  extend_perm: {n}(p) sym_grp: Sym(n) nat: all: x:A. B[x] member: t ∈ T add: m natural_number: $n
Definitions unfolded in proof :  extend_perm: {n}(p) sym_grp: Sym(n) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: perm: Perm(T) implies:  Q inv_funs: InvFuns(A;B;f;g) and: P ∧ Q rev_implies:  Q squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q tidentity: Id{T}
Lemmas referenced :  perm_wf int_seg_wf nat_wf mk_perm_wf_a extend_permf_wf perm_f_wf perm_b_wf equal_wf squash_wf true_wf istype-universe extend_permf_over_comp tidentity_wf subtype_rel_self iff_weakening_equal perm_properties identity_wf extend_permf_over_id
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation_alt cut sqequalHypSubstitution hypothesis universeIsType introduction extract_by_obid dependent_functionElimination thin isectElimination natural_numberEquality setElimination rename hypothesisEquality addEquality because_Cache independent_functionElimination productElimination applyEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry inhabitedIsType universeEquality functionEquality imageMemberEquality baseClosed instantiate independent_isectElimination independent_pairFormation promote_hyp functionIsType

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}p:Sym(n).    (\muparrow{}\{n\}(p)  \mmember{}  Sym(n  +  1))



Date html generated: 2019_10_16-PM-00_59_54
Last ObjectModification: 2018_10_08-AM-09_14_27

Theory : perms_1


Home Index