Nuprl Lemma : extend_perm_wf
∀n:ℕ. ∀p:Sym(n).  (↑{n}(p) ∈ Sym(n + 1))
Proof
Definitions occuring in Statement : 
extend_perm: ↑{n}(p)
, 
sym_grp: Sym(n)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
extend_perm: ↑{n}(p)
, 
sym_grp: Sym(n)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
perm: Perm(T)
, 
implies: P 
⇒ Q
, 
inv_funs: InvFuns(A;B;f;g)
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
tidentity: Id{T}
Lemmas referenced : 
perm_wf, 
int_seg_wf, 
nat_wf, 
mk_perm_wf_a, 
extend_permf_wf, 
perm_f_wf, 
perm_b_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
extend_permf_over_comp, 
tidentity_wf, 
subtype_rel_self, 
iff_weakening_equal, 
perm_properties, 
identity_wf, 
extend_permf_over_id
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation_alt, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
universeIsType, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
addEquality, 
because_Cache, 
independent_functionElimination, 
productElimination, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
universeEquality, 
functionEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_isectElimination, 
independent_pairFormation, 
promote_hyp, 
functionIsType
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}p:Sym(n).    (\muparrow{}\{n\}(p)  \mmember{}  Sym(n  +  1))
Date html generated:
2019_10_16-PM-00_59_54
Last ObjectModification:
2018_10_08-AM-09_14_27
Theory : perms_1
Home
Index