Nuprl Lemma : extend_permf_wf

n:ℕ. ∀p:ℕn ⟶ ℕn.  (extend_permf(p;n) ∈ ℕ1 ⟶ ℕ1)


Proof




Definitions occuring in Statement :  extend_permf: extend_permf(pf;n) int_seg: {i..j-} nat: all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T extend_permf: extend_permf(pf;n) int_seg: {i..j-} nat: uall: [x:A]. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] subtype_rel: A ⊆B or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False lelt: i ≤ j < k nequal: a ≠ b ∈  ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop: le: A ≤ B less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q subtract: m true: True
Lemmas referenced :  eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert int_subtype_base bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf intformeq_wf itermAdd_wf itermConstant_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf le_wf less_than_wf int_seg_subtype istype-false decidable__le not-le-2 not-equal-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-associates add-commutes le-add-cancel int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule lambdaEquality_alt sqequalHypSubstitution setElimination thin rename because_Cache hypothesis introduction extract_by_obid isectElimination inhabitedIsType unionElimination equalityElimination productElimination independent_isectElimination hypothesisEquality equalityTransitivity equalitySymmetry dependent_pairFormation_alt equalityIsType2 baseApply closedConclusion baseClosed applyEquality promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination dependent_set_memberEquality_alt independent_pairFormation natural_numberEquality approximateComputation int_eqEquality isect_memberEquality_alt universeIsType productIsType addEquality minusEquality multiplyEquality equalityIsType1 functionIsType

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}p:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n.    (extend\_permf(p;n)  \mmember{}  \mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbN{}n  +  1)



Date html generated: 2019_10_16-PM-00_59_48
Last ObjectModification: 2018_10_08-AM-09_20_24

Theory : perms_1


Home Index