Nuprl Lemma : extend_permf_over_comp

n:ℕ. ∀f,g:ℕn ⟶ ℕn.  (extend_permf(g f;n) (extend_permf(g;n) extend_permf(f;n)) ∈ (ℕ1 ⟶ ℕ1))


Proof




Definitions occuring in Statement :  extend_permf: extend_permf(pf;n) compose: g int_seg: {i..j-} nat: all: x:A. B[x] function: x:A ⟶ B[x] add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: extend_permf: extend_permf(pf;n) compose: g int_seg: {i..j-} implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False nequal: a ≠ b ∈  not: ¬A ge: i ≥  lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) prop: le: A ≤ B less_than: a < b squash: T decidable: Dec(P) subtype_rel: A ⊆B
Lemmas referenced :  int_seg_wf istype-nat eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int int_seg_properties nat_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf intformnot_wf istype-int int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf decidable__lt decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma istype-le istype-less_than
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis inhabitedIsType hypothesisEquality functionIsType universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename because_Cache sqequalRule lambdaEquality_alt addEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination approximateComputation int_eqEquality Error :memTop,  independent_pairFormation imageElimination applyEquality dependent_set_memberEquality_alt productIsType applyLambdaEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}f,g:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n.    (extend\_permf(g  o  f;n)  =  (extend\_permf(g;n)  o  extend\_permf(f;n)))



Date html generated: 2020_05_20-AM-09_35_26
Last ObjectModification: 2020_01_08-PM-06_17_03

Theory : perms_1


Home Index