Nuprl Lemma : extend_permf_over_id

n:ℕ(extend_permf(Id;n) Id ∈ (ℕ1 ⟶ ℕ1))


Proof




Definitions occuring in Statement :  extend_permf: extend_permf(pf;n) identity: Id int_seg: {i..j-} nat: all: x:A. B[x] function: x:A ⟶ B[x] add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T identity: Id extend_permf: extend_permf(pf;n) uall: [x:A]. B[x] int_seg: {i..j-} nat: implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False
Lemmas referenced :  nat_wf eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert set_subtype_base le_wf istype-int int_subtype_base lelt_wf bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis universeIsType introduction extract_by_obid lambdaEquality_alt sqequalRule sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality inhabitedIsType unionElimination equalityElimination because_Cache productElimination independent_isectElimination dependent_pairFormation_alt equalityTransitivity equalitySymmetry equalityIsType2 baseApply closedConclusion baseClosed applyEquality intEquality natural_numberEquality addEquality promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination equalityIsType1

Latex:
\mforall{}n:\mBbbN{}.  (extend\_permf(Id;n)  =  Id)



Date html generated: 2019_10_16-PM-00_59_51
Last ObjectModification: 2018_10_08-AM-09_20_22

Theory : perms_1


Home Index