Nuprl Lemma : conj_perm_wf

n:ℕ. ∀p,q:Sym(n).  (conj{p}(q) ∈ Sym(n))


Proof




Definitions occuring in Statement :  conj_perm: conj{p}(q) sym_grp: Sym(n) nat: all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T conj_perm: conj{p}(q) uall: [x:A]. B[x] nat: sym_grp: Sym(n)
Lemmas referenced :  comp_perm_wf int_seg_wf inv_perm_wf perm_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination natural_numberEquality setElimination rename because_Cache hypothesis hypothesisEquality inhabitedIsType universeIsType

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}p,q:Sym(n).    (conj\{p\}(q)  \mmember{}  Sym(n))



Date html generated: 2019_10_16-PM-00_59_46
Last ObjectModification: 2018_10_08-AM-09_20_26

Theory : perms_1


Home Index