Nuprl Lemma : remove1_nil_lemma

a,s:Top.  ([] [])


Proof




Definitions occuring in Statement :  remove1: as a nil: [] top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] remove1: as a ycomb: Y so_lambda: so_lambda(x,y,z.t[x; y; z]) member: t ∈ T top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  list_ind_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis

Latex:
\mforall{}a,s:Top.    ([]  \mbackslash{}  a  \msim{}  [])



Date html generated: 2016_05_16-AM-07_38_51
Last ObjectModification: 2015_12_28-PM-05_43_59

Theory : list_2


Home Index