Nuprl Lemma : count_bounds

s:DSet. ∀a:|s|. ∀bs:|s| List.  ((0 ≤ (a #∈ bs)) ∧ ((a #∈ bs) ≤ ||bs||))


Proof




Definitions occuring in Statement :  count: #∈ as length: ||as|| list: List le: A ≤ B all: x:A. B[x] and: P ∧ Q natural_number: $n dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: and: P ∧ Q dset: DSet so_apply: x[s] implies:  Q top: Top cand: c∧ B le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A infix_ap: y decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x]
Lemmas referenced :  list_induction le_wf count_wf length_wf set_car_wf list_wf count_nil_lemma length_of_nil_lemma count_cons_lemma length_of_cons_lemma dset_wf false_wf b2i_bounds set_eq_wf decidable__le b2i_wf full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination because_Cache sqequalRule lambdaEquality productEquality natural_numberEquality dependent_functionElimination hypothesisEquality hypothesis setElimination rename independent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation applyEquality productElimination addEquality unionElimination independent_isectElimination approximateComputation dependent_pairFormation int_eqEquality intEquality

Latex:
\mforall{}s:DSet.  \mforall{}a:|s|.  \mforall{}bs:|s|  List.    ((0  \mleq{}  (a  \#\mmember{}  bs))  \mwedge{}  ((a  \#\mmember{}  bs)  \mleq{}  ||bs||))



Date html generated: 2018_05_22-AM-07_45_23
Last ObjectModification: 2018_05_19-AM-08_32_32

Theory : list_2


Home Index