Nuprl Lemma : count_bounds
∀s:DSet. ∀a:|s|. ∀bs:|s| List.  ((0 ≤ (a #∈ bs)) ∧ ((a #∈ bs) ≤ ||bs||))
Proof
Definitions occuring in Statement : 
count: a #∈ as
, 
length: ||as||
, 
list: T List
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
natural_number: $n
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
dset: DSet
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
top: Top
, 
cand: A c∧ B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
infix_ap: x f y
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
list_induction, 
le_wf, 
count_wf, 
length_wf, 
set_car_wf, 
list_wf, 
count_nil_lemma, 
length_of_nil_lemma, 
count_cons_lemma, 
length_of_cons_lemma, 
dset_wf, 
false_wf, 
b2i_bounds, 
set_eq_wf, 
decidable__le, 
b2i_wf, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
productEquality, 
natural_numberEquality, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
applyEquality, 
productElimination, 
addEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality
Latex:
\mforall{}s:DSet.  \mforall{}a:|s|.  \mforall{}bs:|s|  List.    ((0  \mleq{}  (a  \#\mmember{}  bs))  \mwedge{}  ((a  \#\mmember{}  bs)  \mleq{}  ||bs||))
Date html generated:
2018_05_22-AM-07_45_23
Last ObjectModification:
2018_05_19-AM-08_32_32
Theory : list_2
Home
Index