Nuprl Lemma : count_nil_lemma

a,s:Top.  (a #∈ [] 0)


Proof




Definitions occuring in Statement :  count: #∈ as nil: [] top: Top all: x:A. B[x] natural_number: $n sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T count: #∈ as so_lambda: λ2x.t[x] top: Top so_apply: x[s] int_add_grp: <ℤ+> grp_id: e pi2: snd(t) pi1: fst(t)
Lemmas referenced :  top_wf mon_for_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}a,s:Top.    (a  \#\mmember{}  []  \msim{}  0)



Date html generated: 2016_05_16-AM-07_39_26
Last ObjectModification: 2015_12_28-PM-05_43_31

Theory : list_2


Home Index