Nuprl Lemma : count_wf

s:DSet. ∀a:|s|. ∀bs:|s| List.  (a #∈ bs ∈ ℤ)


Proof




Definitions occuring in Statement :  count: #∈ as list: List all: x:A. B[x] member: t ∈ T int: dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T count: #∈ as subtype_rel: A ⊆B abgrp: AbGrp grp: Group{i} mon: Mon imon: IMonoid uall: [x:A]. B[x] prop: dset: DSet so_lambda: λ2x.t[x] infix_ap: y grp_car: |g| pi1: fst(t) int_add_grp: <ℤ+> guard: {T} uimplies: supposing a so_apply: x[s]
Lemmas referenced :  mon_for_wf int_add_grp_wf grp_sig_wf monoid_p_wf grp_car_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf comm_wf set_car_wf b2i_wf set_eq_wf subtype_rel_self mon_subtype_grp_sig grp_subtype_mon abgrp_subtype_grp subtype_rel_transitivity abgrp_wf grp_wf mon_wf list_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesis applyEquality lambdaEquality setElimination rename hypothesisEquality setEquality cumulativity isectElimination because_Cache instantiate independent_isectElimination intEquality

Latex:
\mforall{}s:DSet.  \mforall{}a:|s|.  \mforall{}bs:|s|  List.    (a  \#\mmember{}  bs  \mmember{}  \mBbbZ{})



Date html generated: 2018_05_22-AM-07_45_17
Last ObjectModification: 2018_05_19-AM-08_32_15

Theory : list_2


Home Index