Nuprl Lemma : assert_of_bpermr
∀s:DSet. ∀as,bs:|s| List.  (↑(as ≡b bs) 
⇐⇒ as ≡(|s|) bs)
Proof
Definitions occuring in Statement : 
bpermr: as ≡b bs
, 
permr: as ≡(T) bs
, 
list: T List
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
bpermr: as ≡b bs
, 
ycomb: Y
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
cons: [a / b]
, 
bfalse: ff
, 
false: False
, 
not: ¬A
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
band: p ∧b q
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
cand: A c∧ B
Lemmas referenced : 
list_wf, 
set_car_wf, 
dset_wf, 
list_induction, 
all_wf, 
iff_wf, 
assert_wf, 
bpermr_wf, 
permr_wf, 
list_ind_nil_lemma, 
istype-void, 
list_ind_cons_lemma, 
list-cases, 
null_nil_lemma, 
permr_reflex, 
nil_wf, 
true_wf, 
product_subtype_list, 
null_cons_lemma, 
cons_wf, 
permr_inversion, 
not_permr_cons_nil, 
remove1_wf, 
iff_weakening_uiff, 
mem_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
bfalse_wf, 
assert_of_band, 
permr_functionality_wrt_permr, 
permr_transitivity, 
cons_functionality_wrt_permr, 
cons_remove1_permr, 
permr_weakening, 
cons_permr_mem, 
permr_hd_cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
dependent_functionElimination, 
because_Cache, 
inhabitedIsType, 
independent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
functionIsType, 
productIsType, 
unionElimination, 
independent_pairFormation, 
natural_numberEquality, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
dependent_pairFormation_alt, 
equalityIsType1, 
instantiate, 
cumulativity, 
productEquality
Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.    (\muparrow{}(as  \mequiv{}\msubb{}  bs)  \mLeftarrow{}{}\mRightarrow{}  as  \mequiv{}(|s|)  bs)
Date html generated:
2019_10_16-PM-01_03_59
Last ObjectModification:
2018_10_08-AM-11_12_23
Theory : list_2
Home
Index