Nuprl Lemma : assert_of_bpermr

s:DSet. ∀as,bs:|s| List.  (↑(as ≡b bs) ⇐⇒ as ≡(|s|) bs)


Proof




Definitions occuring in Statement :  bpermr: as ≡b bs permr: as ≡(T) bs list: List assert: b all: x:A. B[x] iff: ⇐⇒ Q dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] implies:  Q bpermr: as ≡b bs ycomb: Y so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] iff: ⇐⇒ Q and: P ∧ Q prop: rev_implies:  Q or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt true: True cons: [a b] bfalse: ff false: False not: ¬A bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) uimplies: supposing a band: p ∧b q exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb cand: c∧ B
Lemmas referenced :  list_wf set_car_wf dset_wf list_induction all_wf iff_wf assert_wf bpermr_wf permr_wf list_ind_nil_lemma istype-void list_ind_cons_lemma list-cases null_nil_lemma permr_reflex nil_wf true_wf product_subtype_list null_cons_lemma cons_wf permr_inversion not_permr_cons_nil remove1_wf iff_weakening_uiff mem_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot bfalse_wf assert_of_band permr_functionality_wrt_permr permr_transitivity cons_functionality_wrt_permr cons_remove1_permr permr_weakening cons_permr_mem permr_hd_cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality_alt applyEquality dependent_functionElimination because_Cache inhabitedIsType independent_functionElimination isect_memberEquality_alt voidElimination functionIsType productIsType unionElimination independent_pairFormation natural_numberEquality promote_hyp hypothesis_subsumption productElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination dependent_pairFormation_alt equalityIsType1 instantiate cumulativity productEquality

Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.    (\muparrow{}(as  \mequiv{}\msubb{}  bs)  \mLeftarrow{}{}\mRightarrow{}  as  \mequiv{}(|s|)  bs)



Date html generated: 2019_10_16-PM-01_03_59
Last ObjectModification: 2018_10_08-AM-11_12_23

Theory : list_2


Home Index