Nuprl Lemma : permr_reflex

T:Type. ∀as:T List.  (as ≡(T) as)


Proof




Definitions occuring in Statement :  permr: as ≡(T) bs list: List all: x:A. B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  permr_weakening list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality because_Cache independent_functionElimination hypothesis isectElimination universeEquality

Latex:
\mforall{}T:Type.  \mforall{}as:T  List.    (as  \mequiv{}(T)  as)



Date html generated: 2016_05_16-AM-07_32_33
Last ObjectModification: 2015_12_28-PM-05_39_45

Theory : perms_2


Home Index