Nuprl Lemma : cons_permr_mem
∀s:DSet. ∀a:|s|. ∀as,bs:|s| List.  (([a / as] ≡(|s|) bs) 
⇒ (↑(a ∈b bs)))
Proof
Definitions occuring in Statement : 
mem: a ∈b as
, 
permr: as ≡(T) bs
, 
cons: [a / b]
, 
list: T List
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
prop: ℙ
, 
permr: as ≡(T) bs
, 
cand: A c∧ B
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
sym_grp: Sym(n)
, 
perm: Perm(T)
, 
select: L[n]
, 
cons: [a / b]
, 
guard: {T}
Lemmas referenced : 
permr_wf, 
set_car_wf, 
cons_wf, 
list_wf, 
dset_wf, 
permr_inversion, 
mem_iff_exists, 
istype-false, 
length_of_cons_lemma, 
istype-void, 
non_neg_length, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
intformeq_wf, 
itermAdd_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
le_wf, 
less_than_wf, 
length_wf, 
perm_f_wf, 
int_seg_wf, 
select_wf, 
int_seg_properties, 
decidable__le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
inhabitedIsType, 
independent_functionElimination, 
productElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
sqequalRule, 
isect_memberEquality_alt, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
productIsType, 
applyEquality, 
equalityIsType1
Latex:
\mforall{}s:DSet.  \mforall{}a:|s|.  \mforall{}as,bs:|s|  List.    (([a  /  as]  \mequiv{}(|s|)  bs)  {}\mRightarrow{}  (\muparrow{}(a  \mmember{}\msubb{}  bs)))
Date html generated:
2019_10_16-PM-01_03_37
Last ObjectModification:
2018_10_08-PM-01_00_55
Theory : list_2
Home
Index