Nuprl Lemma : cons_permr_mem

s:DSet. ∀a:|s|. ∀as,bs:|s| List.  (([a as] ≡(|s|) bs)  (↑(a ∈b bs)))


Proof




Definitions occuring in Statement :  mem: a ∈b as permr: as ≡(T) bs cons: [a b] list: List assert: b all: x:A. B[x] implies:  Q dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] dset: DSet prop: permr: as ≡(T) bs cand: c∧ B exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A top: Top ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) sym_grp: Sym(n) perm: Perm(T) select: L[n] cons: [a b] guard: {T}
Lemmas referenced :  permr_wf set_car_wf cons_wf list_wf dset_wf permr_inversion mem_iff_exists istype-false length_of_cons_lemma istype-void non_neg_length decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformle_wf intformeq_wf itermAdd_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_formula_prop_wf le_wf less_than_wf length_wf perm_f_wf int_seg_wf select_wf int_seg_properties decidable__le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination setElimination rename hypothesisEquality hypothesis because_Cache inhabitedIsType independent_functionElimination productElimination dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation sqequalRule isect_memberEquality_alt voidElimination equalityTransitivity equalitySymmetry unionElimination independent_isectElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality productIsType applyEquality equalityIsType1

Latex:
\mforall{}s:DSet.  \mforall{}a:|s|.  \mforall{}as,bs:|s|  List.    (([a  /  as]  \mequiv{}(|s|)  bs)  {}\mRightarrow{}  (\muparrow{}(a  \mmember{}\msubb{}  bs)))



Date html generated: 2019_10_16-PM-01_03_37
Last ObjectModification: 2018_10_08-PM-01_00_55

Theory : list_2


Home Index