Nuprl Lemma : cons_permr_mem
∀s:DSet. ∀a:|s|. ∀as,bs:|s| List. (([a / as] ≡(|s|) bs)
⇒ (↑(a ∈b bs)))
Proof
Definitions occuring in Statement :
mem: a ∈b as
,
permr: as ≡(T) bs
,
cons: [a / b]
,
list: T List
,
assert: ↑b
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
dset: DSet
,
set_car: |p|
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
dset: DSet
,
prop: ℙ
,
permr: as ≡(T) bs
,
cand: A c∧ B
,
exists: ∃x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
top: Top
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
sym_grp: Sym(n)
,
perm: Perm(T)
,
select: L[n]
,
cons: [a / b]
,
guard: {T}
Lemmas referenced :
permr_wf,
set_car_wf,
cons_wf,
list_wf,
dset_wf,
permr_inversion,
mem_iff_exists,
istype-false,
length_of_cons_lemma,
istype-void,
non_neg_length,
decidable__lt,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformless_wf,
itermConstant_wf,
itermVar_wf,
intformle_wf,
intformeq_wf,
itermAdd_wf,
istype-int,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_le_lemma,
int_formula_prop_eq_lemma,
int_term_value_add_lemma,
int_formula_prop_wf,
le_wf,
less_than_wf,
length_wf,
perm_f_wf,
int_seg_wf,
select_wf,
int_seg_properties,
decidable__le
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
universeIsType,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isectElimination,
setElimination,
rename,
hypothesisEquality,
hypothesis,
because_Cache,
inhabitedIsType,
independent_functionElimination,
productElimination,
dependent_set_memberEquality_alt,
natural_numberEquality,
independent_pairFormation,
sqequalRule,
isect_memberEquality_alt,
voidElimination,
equalityTransitivity,
equalitySymmetry,
unionElimination,
independent_isectElimination,
approximateComputation,
dependent_pairFormation_alt,
lambdaEquality_alt,
int_eqEquality,
productIsType,
applyEquality,
equalityIsType1
Latex:
\mforall{}s:DSet. \mforall{}a:|s|. \mforall{}as,bs:|s| List. (([a / as] \mequiv{}(|s|) bs) {}\mRightarrow{} (\muparrow{}(a \mmember{}\msubb{} bs)))
Date html generated:
2019_10_16-PM-01_03_37
Last ObjectModification:
2018_10_08-PM-01_00_55
Theory : list_2
Home
Index