Nuprl Lemma : mem_iff_exists
∀s:DSet. ∀a:|s|. ∀bs:|s| List.  (↑(a ∈b bs) ⇐⇒ ∃n:ℕ||bs||. (bs[n] = a ∈ |s|))
Proof
Definitions occuring in Statement : 
mem: a ∈b as, 
select: L[n], 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
assert: ↑b, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
natural_number: $n, 
equal: s = t ∈ T, 
dset: DSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
mem: a ∈b as, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
dset: DSet, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
bool: 𝔹, 
grp_car: |g|, 
pi1: fst(t), 
bor_mon: <𝔹,∨b>, 
guard: {T}, 
uimplies: b supposing a, 
infix_ap: x f y, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
top: Top, 
less_than: a < b, 
squash: ↓T
Lemmas referenced : 
bexists_iff_exists_nth, 
infix_ap_wf, 
set_car_wf, 
bool_wf, 
set_eq_wf, 
assert_wf, 
mon_for_wf, 
bor_mon_wf, 
grp_car_wf, 
subtype_rel_self, 
mon_subtype_grp_sig, 
abmonoid_subtype_mon, 
subtype_rel_transitivity, 
abmonoid_wf, 
mon_wf, 
grp_sig_wf, 
int_seg_wf, 
length_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
list_wf, 
dset_wf, 
iff_weakening_uiff, 
equal_wf, 
assert_of_dset_eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_functionElimination, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
inhabitedIsType, 
universeIsType, 
applyEquality, 
functionEquality, 
instantiate, 
independent_isectElimination, 
independent_pairFormation, 
promote_hyp, 
productIsType, 
natural_numberEquality, 
equalityIsType1, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
imageElimination
Latex:
\mforall{}s:DSet.  \mforall{}a:|s|.  \mforall{}bs:|s|  List.    (\muparrow{}(a  \mmember{}\msubb{}  bs)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}||bs||.  (bs[n]  =  a))
Date html generated:
2019_10_16-PM-01_03_35
Last ObjectModification:
2018_10_08-AM-11_21_01
Theory : list_2
Home
Index