Nuprl Lemma : mem_iff_exists

s:DSet. ∀a:|s|. ∀bs:|s| List.  (↑(a ∈b bs) ⇐⇒ ∃n:ℕ||bs||. (bs[n] a ∈ |s|))


Proof




Definitions occuring in Statement :  mem: a ∈b as select: L[n] length: ||as|| list: List int_seg: {i..j-} assert: b all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q natural_number: $n equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] mem: a ∈b as iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T so_lambda: λ2x.t[x] uall: [x:A]. B[x] dset: DSet so_apply: x[s] subtype_rel: A ⊆B bool: 𝔹 grp_car: |g| pi1: fst(t) bor_mon: <𝔹,∨b> guard: {T} uimplies: supposing a infix_ap: y prop: rev_implies:  Q exists: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top less_than: a < b squash: T
Lemmas referenced :  bexists_iff_exists_nth infix_ap_wf set_car_wf bool_wf set_eq_wf assert_wf mon_for_wf bor_mon_wf grp_car_wf subtype_rel_self mon_subtype_grp_sig abmonoid_subtype_mon subtype_rel_transitivity abmonoid_wf mon_wf grp_sig_wf int_seg_wf length_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma list_wf dset_wf iff_weakening_uiff equal_wf assert_of_dset_eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalHypSubstitution productElimination thin independent_functionElimination introduction extract_by_obid dependent_functionElimination hypothesisEquality sqequalRule lambdaEquality_alt isectElimination setElimination rename because_Cache hypothesis inhabitedIsType universeIsType applyEquality functionEquality instantiate independent_isectElimination independent_pairFormation promote_hyp productIsType natural_numberEquality equalityIsType1 unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination imageElimination

Latex:
\mforall{}s:DSet.  \mforall{}a:|s|.  \mforall{}bs:|s|  List.    (\muparrow{}(a  \mmember{}\msubb{}  bs)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}||bs||.  (bs[n]  =  a))



Date html generated: 2019_10_16-PM-01_03_35
Last ObjectModification: 2018_10_08-AM-11_21_01

Theory : list_2


Home Index