Nuprl Lemma : not_permr_cons_nil

T:Type. ∀a:T. ∀as:T List.  ([a as] ≡(T) []))


Proof




Definitions occuring in Statement :  permr: as ≡(T) bs cons: [a b] nil: [] list: List all: x:A. B[x] not: ¬A universe: Type
Definitions unfolded in proof :  member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x] prop: not: ¬A implies:  Q false: False permr: as ≡(T) bs cand: c∧ B top: Top ge: i ≥  exists: x:A. B[x] le: A ≤ B and: P ∧ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  permr_wf cons_wf nil_wf list_wf istype-universe length_of_cons_lemma istype-void length_of_nil_lemma non_neg_length full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf itermAdd_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_formula_prop_wf
Rules used in proof :  universeIsType sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination hypothesis universeEquality lambdaFormation_alt independent_functionElimination voidElimination productElimination sqequalRule isect_memberEquality_alt natural_numberEquality independent_isectElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality independent_pairFormation

Latex:
\mforall{}T:Type.  \mforall{}a:T.  \mforall{}as:T  List.    (\mneg{}([a  /  as]  \mequiv{}(T)  []))



Date html generated: 2019_10_16-PM-01_00_22
Last ObjectModification: 2018_10_08-AM-10_29_25

Theory : perms_2


Home Index