Nuprl Lemma : permr_hd_cancel

T:Type. ∀a:T. ∀bs,bs':T List.  (([a bs] ≡(T) [a bs'])  (bs ≡(T) bs'))


Proof




Definitions occuring in Statement :  permr: as ≡(T) bs cons: [a b] list: List all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] permr: as ≡(T) bs cand: c∧ B exists: x:A. B[x] top: Top ge: i ≥  decidable: Dec(P) or: P ∨ Q le: A ≤ B and: P ∧ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A int_seg: {i..j-} lelt: i ≤ j < k guard: {T} uiff: uiff(P;Q) subtract: m nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True sym_grp: Sym(n) so_lambda: λ2x.t[x] perm: Perm(T) subtype_rel: A ⊆B nat: so_apply: x[s] inv_funs: InvFuns(A;B;f;g) tidentity: Id{T} compose: g identity: Id perm_morph: perm_morph(S;T;s2t;t2s;p) mk_perm: mk_perm(f;b) perm_f: p.f pi1: fst(t) tl_perm: tl_perm(p) comp_perm: comp_perm txpose_perm: txpose_perm swap: swap(i;j) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) select: L[n] cons: [a b]
Lemmas referenced :  permr_wf cons_wf list_wf length_of_cons_lemma non_neg_length decidable__equal_int length_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf perm_morph_wf int_seg_wf subtract_wf int_seg_properties decidable__le intformle_wf itermSubtract_wf int_formula_prop_le_lemma int_term_value_subtract_lemma decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf add-member-int_seg2 tl_perm_wf add_nat_plus length_wf_nat less_than_wf nat_plus_wf nat_plus_properties equal_wf all_wf select_wf perm_f_wf nat_properties subtract-add-cancel add-subtract-cancel eq_int_wf bool_wf equal-wf-T-base assert_wf bnot_wf not_wf perm_b_wf false_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot equal_symmetry perm_b_to_f perm_f_inj subtype_base_sq set_subtype_base int_subtype_base squash_wf true_wf select-cons-tl add-is-int-iff equal-wf-base-T equal-wf-base select_cons_tl iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin cumulativity hypothesisEquality isectElimination hypothesis universeEquality productElimination independent_pairFormation sqequalRule isect_memberEquality voidElimination voidEquality because_Cache unionElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll equalityTransitivity equalitySymmetry dependent_set_memberEquality setElimination rename addEquality independent_functionElimination imageMemberEquality baseClosed applyLambdaEquality applyEquality equalityElimination impliesFunctionality instantiate hyp_replacement imageElimination pointwiseFunctionality promote_hyp baseApply closedConclusion

Latex:
\mforall{}T:Type.  \mforall{}a:T.  \mforall{}bs,bs':T  List.    (([a  /  bs]  \mequiv{}(T)  [a  /  bs'])  {}\mRightarrow{}  (bs  \mequiv{}(T)  bs'))



Date html generated: 2017_10_01-AM-09_54_18
Last ObjectModification: 2017_03_03-PM-00_56_00

Theory : perms_2


Home Index