Nuprl Lemma : equal_symmetry

[T:Type]. ∀[x,y:T].  uiff(x y ∈ T;y x ∈ T)


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop:
Lemmas referenced :  equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut independent_pairFormation equalitySymmetry hypothesis Error :universeIsType,  extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule productElimination independent_pairEquality isect_memberEquality axiomEquality equalityTransitivity Error :inhabitedIsType,  because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x,y:T].    uiff(x  =  y;y  =  x)



Date html generated: 2019_06_20-AM-11_16_38
Last ObjectModification: 2018_09_26-AM-10_24_16

Theory : core_2


Home Index