Nuprl Lemma : equal_symmetry
∀[T:Type]. ∀[x,y:T].  uiff(x = y ∈ T;y = x ∈ T)
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
Lemmas referenced : 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
equalitySymmetry, 
hypothesis, 
Error :universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
Error :inhabitedIsType, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x,y:T].    uiff(x  =  y;y  =  x)
Date html generated:
2019_06_20-AM-11_16_38
Last ObjectModification:
2018_09_26-AM-10_24_16
Theory : core_2
Home
Index