Nuprl Lemma : perm_b_to_f

T:Type. ∀p:Perm(T). ∀x,y:T.  ((p.b x) y ∈ ⇐⇒ (p.f y) ∈ T)


Proof




Definitions occuring in Statement :  perm: Perm(T) perm_b: p.b perm_f: p.f all: x:A. B[x] iff: ⇐⇒ Q apply: a universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T perm: Perm(T) rev_implies:  Q uall: [x:A]. B[x] squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T}
Lemmas referenced :  perm_b_wf perm_f_wf istype-universe perm_wf equal_wf squash_wf true_wf perm_f_b_cancel subtype_rel_self iff_weakening_equal perm_b_f_cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation cut hypothesis equalityIsType1 inhabitedIsType hypothesisEquality applyEquality introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename because_Cache isectElimination universeIsType universeEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry natural_numberEquality sqequalRule imageMemberEquality baseClosed instantiate independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}T:Type.  \mforall{}p:Perm(T).  \mforall{}x,y:T.    ((p.b  x)  =  y  \mLeftarrow{}{}\mRightarrow{}  x  =  (p.f  y))



Date html generated: 2019_10_16-PM-01_00_40
Last ObjectModification: 2018_10_08-AM-11_01_14

Theory : perms_2


Home Index