Nuprl Lemma : perm_b_to_f
∀T:Type. ∀p:Perm(T). ∀x,y:T.  ((p.b x) = y ∈ T 
⇐⇒ x = (p.f y) ∈ T)
Proof
Definitions occuring in Statement : 
perm: Perm(T)
, 
perm_b: p.b
, 
perm_f: p.f
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
apply: f a
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
perm: Perm(T)
, 
rev_implies: P 
⇐ Q
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
Lemmas referenced : 
perm_b_wf, 
perm_f_wf, 
istype-universe, 
perm_wf, 
equal_wf, 
squash_wf, 
true_wf, 
perm_f_b_cancel, 
subtype_rel_self, 
iff_weakening_equal, 
perm_b_f_cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
cut, 
hypothesis, 
equalityIsType1, 
inhabitedIsType, 
hypothesisEquality, 
applyEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
isectElimination, 
universeIsType, 
universeEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_isectElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}T:Type.  \mforall{}p:Perm(T).  \mforall{}x,y:T.    ((p.b  x)  =  y  \mLeftarrow{}{}\mRightarrow{}  x  =  (p.f  y))
Date html generated:
2019_10_16-PM-01_00_40
Last ObjectModification:
2018_10_08-AM-11_01_14
Theory : perms_2
Home
Index