Nuprl Lemma : perm_f_b_cancel
∀T:Type. ∀p:Perm(T). ∀x:T. ((p.f (p.b x)) = x ∈ T)
Proof
Definitions occuring in Statement :
perm: Perm(T)
,
perm_b: p.b
,
perm_f: p.f
,
all: ∀x:A. B[x]
,
apply: f a
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
inv_funs: InvFuns(A;B;f;g)
,
and: P ∧ Q
,
uall: ∀[x:A]. B[x]
,
true: True
,
compose: f o g
,
tidentity: Id{T}
,
identity: Id
,
squash: ↓T
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
Lemmas referenced :
perm_properties,
istype-universe,
perm_wf,
equal_wf,
squash_wf,
true_wf,
subtype_rel_self,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
hypothesis,
productElimination,
isectElimination,
universeIsType,
universeEquality,
natural_numberEquality,
sqequalRule,
applyEquality,
lambdaEquality_alt,
imageElimination,
equalityTransitivity,
equalitySymmetry,
inhabitedIsType,
imageMemberEquality,
baseClosed,
instantiate,
independent_isectElimination,
independent_functionElimination
Latex:
\mforall{}T:Type. \mforall{}p:Perm(T). \mforall{}x:T. ((p.f (p.b x)) = x)
Date html generated:
2019_10_16-PM-01_00_36
Last ObjectModification:
2018_10_08-AM-10_57_42
Theory : perms_2
Home
Index