Nuprl Lemma : perm_f_inj

T:Type. ∀p:Perm(T). ∀x,y:T.  (((p.f x) (p.f y) ∈ T)  (x y ∈ T))


Proof




Definitions occuring in Statement :  perm: Perm(T) perm_f: p.f all: x:A. B[x] implies:  Q apply: a universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T perm: Perm(T) uall: [x:A]. B[x] biject: Bij(A;B;f) and: P ∧ Q guard: {T} uimplies: supposing a inject: Inj(A;B;f)
Lemmas referenced :  perm_f_wf istype-universe perm_wf perm_properties perm_b_wf fun_with_inv_is_bij
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis equalityIsType1 inhabitedIsType hypothesisEquality applyEquality introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename because_Cache isectElimination universeIsType universeEquality productElimination independent_isectElimination independent_functionElimination

Latex:
\mforall{}T:Type.  \mforall{}p:Perm(T).  \mforall{}x,y:T.    (((p.f  x)  =  (p.f  y))  {}\mRightarrow{}  (x  =  y))



Date html generated: 2019_10_16-PM-01_00_42
Last ObjectModification: 2018_10_08-AM-11_01_13

Theory : perms_2


Home Index