Nuprl Lemma : tl_perm_wf

n:ℕ+. ∀p:Perm(ℕn).  (tl_perm(p) ∈ Perm(ℕ+n))


Proof




Definitions occuring in Statement :  tl_perm: tl_perm(p) perm: Perm(T) int_seg: {i..j-} nat_plus: + all: x:A. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T perm: Perm(T) uall: [x:A]. B[x] nat_plus: + tl_perm: tl_perm(p) comp_perm: comp_perm txpose_perm: txpose_perm mk_perm: mk_perm(f;b) perm_f: p.f pi1: fst(t) compose: g swap: swap(i;j) int_seg: {i..j-} implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b subtype_rel: A ⊆B decidable: Dec(P) nequal: a ≠ b ∈  less_than': less_than'(a;b) iff: ⇐⇒ Q so_apply: x[s] so_lambda: λ2x.t[x] rev_implies:  Q pi2: snd(t) perm_b: p.b true: True sym_grp: Sym(n) inv_funs: InvFuns(A;B;f;g) identity: Id tidentity: Id{T}
Lemmas referenced :  perm_wf int_seg_wf nat_plus_wf mk_perm_wf eq_int_wf eqtt_to_assert assert_of_eq_int int_seg_properties nat_plus_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int less_than_wf le_wf int_formula_prop_less_lemma int_formula_prop_not_lemma intformless_wf intformnot_wf decidable__lt istype-false perm_b_wf perm_b_to_f decidable__le decidable__equal_int int_subtype_base lelt_wf set_subtype_base perm_f_wf perm_f_inj equal-wf-T-base equal-wf-base-T iff_transitivity iff_weakening_uiff equal_symmetry equal_wf not_wf bnot_wf assert_wf uiff_transitivity assert_of_bnot iff_weakening_equal subtype_rel_self istype-universe true_wf squash_wf perm_b_inj equal-wf-base le_weakening2 nat_plus_subtype_nat txpose_perm_wf comp_perm_wf perm_b_f_cancel perm_f_b_cancel inv_funs_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut dependent_set_memberEquality_alt sqequalHypSubstitution hypothesis universeIsType introduction extract_by_obid dependent_functionElimination thin isectElimination natural_numberEquality setElimination rename hypothesisEquality sqequalRule lambdaEquality_alt inhabitedIsType unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination imageElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation equalityIstype promote_hyp instantiate cumulativity because_Cache equalityIsType1 productIsType applyEquality applyLambdaEquality baseClosed intEquality equalityIsType4 closedConclusion baseApply imageMemberEquality universeEquality

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}p:Perm(\mBbbN{}n).    (tl\_perm(p)  \mmember{}  Perm(\mBbbN{}\msupplus{}n))



Date html generated: 2019_10_16-PM-01_00_49
Last ObjectModification: 2019_06_20-PM-06_44_18

Theory : perms_2


Home Index