Nuprl Lemma : perm_morph_wf
∀S,T:Type. ∀s2t:S ⟶ T. ∀t2s:T ⟶ S.  (InvFuns(S;T;s2t;t2s) 
⇒ (∀p:Perm(S). (perm_morph(S;T;s2t;t2s;p) ∈ Perm(T))))
Proof
Definitions occuring in Statement : 
perm_morph: perm_morph(S;T;s2t;t2s;p)
, 
perm: Perm(T)
, 
inv_funs: InvFuns(A;B;f;g)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
perm_morph: perm_morph(S;T;s2t;t2s;p)
, 
uall: ∀[x:A]. B[x]
, 
perm: Perm(T)
, 
prop: ℙ
, 
inv_funs: InvFuns(A;B;f;g)
, 
and: P ∧ Q
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
mk_perm_wf_a, 
compose_wf, 
perm_f_wf, 
perm_b_wf, 
perm_wf, 
inv_funs_wf, 
istype-universe, 
perm_properties, 
equal_wf, 
squash_wf, 
true_wf, 
comp_assoc, 
subtype_rel_self, 
comp_id_l, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
because_Cache, 
setElimination, 
rename, 
hypothesis, 
independent_functionElimination, 
universeIsType, 
functionIsType, 
inhabitedIsType, 
universeEquality, 
productElimination, 
independent_pairFormation, 
functionEquality, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_isectElimination
Latex:
\mforall{}S,T:Type.  \mforall{}s2t:S  {}\mrightarrow{}  T.  \mforall{}t2s:T  {}\mrightarrow{}  S.
    (InvFuns(S;T;s2t;t2s)  {}\mRightarrow{}  (\mforall{}p:Perm(S).  (perm\_morph(S;T;s2t;t2s;p)  \mmember{}  Perm(T))))
Date html generated:
2019_10_16-PM-01_00_51
Last ObjectModification:
2018_10_08-AM-10_59_26
Theory : perms_2
Home
Index