Nuprl Lemma : perm_morph_wf

S,T:Type. ∀s2t:S ⟶ T. ∀t2s:T ⟶ S.  (InvFuns(S;T;s2t;t2s)  (∀p:Perm(S). (perm_morph(S;T;s2t;t2s;p) ∈ Perm(T))))


Proof




Definitions occuring in Statement :  perm_morph: perm_morph(S;T;s2t;t2s;p) perm: Perm(T) inv_funs: InvFuns(A;B;f;g) all: x:A. B[x] implies:  Q member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T perm_morph: perm_morph(S;T;s2t;t2s;p) uall: [x:A]. B[x] perm: Perm(T) prop: inv_funs: InvFuns(A;B;f;g) and: P ∧ Q true: True squash: T subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  mk_perm_wf_a compose_wf perm_f_wf perm_b_wf perm_wf inv_funs_wf istype-universe perm_properties equal_wf squash_wf true_wf comp_assoc subtype_rel_self comp_id_l iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination because_Cache setElimination rename hypothesis independent_functionElimination universeIsType functionIsType inhabitedIsType universeEquality productElimination independent_pairFormation functionEquality natural_numberEquality equalityTransitivity equalitySymmetry applyEquality lambdaEquality_alt imageElimination imageMemberEquality baseClosed instantiate independent_isectElimination

Latex:
\mforall{}S,T:Type.  \mforall{}s2t:S  {}\mrightarrow{}  T.  \mforall{}t2s:T  {}\mrightarrow{}  S.
    (InvFuns(S;T;s2t;t2s)  {}\mRightarrow{}  (\mforall{}p:Perm(S).  (perm\_morph(S;T;s2t;t2s;p)  \mmember{}  Perm(T))))



Date html generated: 2019_10_16-PM-01_00_51
Last ObjectModification: 2018_10_08-AM-10_59_26

Theory : perms_2


Home Index