Nuprl Lemma : subtract-add-cancel
∀[x,y:ℤ].  ((x - y) + y ~ x)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
subtract: n - m
, 
add: n + m
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtract: n - m
, 
top: Top
Lemmas referenced : 
add-associates, 
add-inverse2, 
add-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
hypothesisEquality, 
sqequalAxiom, 
intEquality, 
because_Cache
Latex:
\mforall{}[x,y:\mBbbZ{}].    ((x  -  y)  +  y  \msim{}  x)
Date html generated:
2016_05_13-PM-03_28_59
Last ObjectModification:
2015_12_26-AM-09_47_57
Theory : arithmetic
Home
Index