Nuprl Lemma : mem_iff_count_nzero

s:DSet. ∀a:|s|. ∀bs:|s| List.  (↑(a ∈b bs) ⇐⇒ (a #∈ bs) > 0)


Proof




Definitions occuring in Statement :  count: #∈ as mem: a ∈b as list: List assert: b gt: i > j all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] dset: DSet so_apply: x[s] implies:  Q top: Top assert: b ifthenelse: if then else fi  bfalse: ff prop: iff: ⇐⇒ Q and: P ∧ Q false: False rev_implies:  Q gt: i > j less_than: a < b squash: T less_than': less_than'(a;b) infix_ap: y or: P ∨ Q uiff: uiff(P;Q) uimplies: supposing a b2i: b2i(b) ge: i ≥  decidable: Dec(P) le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A guard: {T} bool: 𝔹 unit: Unit it: btrue: tt
Lemmas referenced :  list_induction iff_wf assert_wf mem_wf gt_wf count_wf list_wf set_car_wf mem_nil_lemma count_nil_lemma mem_cons_lemma count_cons_lemma dset_wf false_wf bor_wf set_eq_wf or_wf equal_wf b2i_wf iff_transitivity iff_weakening_uiff assert_of_bor assert_of_dset_eq bool_wf equal-wf-T-base non_neg_length count_bounds decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf bnot_wf not_wf add-is-int-iff uiff_transitivity eqtt_to_assert eqff_to_assert assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination because_Cache sqequalRule lambdaEquality dependent_functionElimination hypothesisEquality hypothesis natural_numberEquality setElimination rename independent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation imageElimination productElimination applyEquality addEquality addLevel impliesFunctionality orFunctionality independent_isectElimination equalityTransitivity equalitySymmetry baseClosed unionElimination dependent_pairFormation int_eqEquality intEquality computeAll inlFormation inrFormation pointwiseFunctionality promote_hyp baseApply closedConclusion equalityElimination

Latex:
\mforall{}s:DSet.  \mforall{}a:|s|.  \mforall{}bs:|s|  List.    (\muparrow{}(a  \mmember{}\msubb{}  bs)  \mLeftarrow{}{}\mRightarrow{}  (a  \#\mmember{}  bs)  >  0)



Date html generated: 2017_10_01-AM-09_56_21
Last ObjectModification: 2017_03_03-PM-00_57_55

Theory : list_2


Home Index