Nuprl Lemma : fset_properties

s:DSet. ∀a:FiniteSet{s}.  {∀x:|s|. ((x #∈ a) ≤ 1)}


Proof




Definitions occuring in Statement :  finite_set: FiniteSet{s} mset_count: #∈ a guard: {T} le: A ≤ B all: x:A. B[x] natural_number: $n dset: DSet set_car: |p|
Definitions unfolded in proof :  guard: {T} all: x:A. B[x] finite_set: FiniteSet{s} member: t ∈ T uall: [x:A]. B[x] dset: DSet subtype_rel: A ⊆B nat: sq_stable: SqStable(P) implies:  Q squash: T
Lemmas referenced :  nat_wf mset_count_wf sq_stable__le dset_wf finite_set_wf set_car_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation sqequalHypSubstitution setElimination thin rename cut lemma_by_obid isectElimination hypothesisEquality hypothesis dependent_functionElimination applyEquality lambdaEquality natural_numberEquality independent_functionElimination introduction imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}s:DSet.  \mforall{}a:FiniteSet\{s\}.    \{\mforall{}x:|s|.  ((x  \#\mmember{}  a)  \mleq{}  1)\}



Date html generated: 2016_05_16-AM-07_50_56
Last ObjectModification: 2016_01_16-PM-11_39_14

Theory : mset


Home Index