Nuprl Lemma : rng_abmon_wf

rng_abmon{i}() ∈ 𝕌'


Proof




Definitions occuring in Statement :  rng_abmon: rng_abmon{i}() member: t ∈ T universe: Type
Definitions unfolded in proof :  rng_abmon: rng_abmon{i}() member: t ∈ T uall: [x:A]. B[x] and: P ∧ Q prop:
Lemmas referenced :  rng_sig_wf and_wf monoid_p_wf rng_car_wf rng_plus_wf rng_zero_wf comm_wf eqfun_p_wf rng_eq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity setEquality cut lemma_by_obid hypothesis cumulativity sqequalHypSubstitution isectElimination thin hypothesisEquality

Latex:
rng\_abmon\{i\}()  \mmember{}  \mBbbU{}'



Date html generated: 2016_05_16-AM-08_11_38
Last ObjectModification: 2015_12_28-PM-06_06_15

Theory : list_3


Home Index