Nuprl Lemma : rng_abmon_wf
rng_abmon{i}() ∈ 𝕌'
Proof
Definitions occuring in Statement : 
rng_abmon: rng_abmon{i}()
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
rng_abmon: rng_abmon{i}()
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
rng_sig_wf, 
and_wf, 
monoid_p_wf, 
rng_car_wf, 
rng_plus_wf, 
rng_zero_wf, 
comm_wf, 
eqfun_p_wf, 
rng_eq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
setEquality, 
cut, 
lemma_by_obid, 
hypothesis, 
cumulativity, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality
Latex:
rng\_abmon\{i\}()  \mmember{}  \mBbbU{}'
Date html generated:
2016_05_16-AM-08_11_38
Last ObjectModification:
2015_12_28-PM-06_06_15
Theory : list_3
Home
Index