Nuprl Lemma : eqfun_p_wf
∀[T:Type]. ∀[eq:T ⟶ T ⟶ 𝔹].  (IsEqFun(T;eq) ∈ ℙ)
Proof
Definitions occuring in Statement : 
eqfun_p: IsEqFun(T;eq)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
eqfun_p: IsEqFun(T;eq)
, 
so_lambda: λ2x.t[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
Lemmas referenced : 
uall_wf, 
uiff_wf, 
assert_wf, 
equal_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsType, 
Error :universeIsType, 
Error :inhabitedIsType, 
isect_memberEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].    (IsEqFun(T;eq)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-00_29_12
Last ObjectModification:
2018_09_26-AM-11_46_41
Theory : rel_1
Home
Index