Nuprl Lemma : eqfun_p_wf

[T:Type]. ∀[eq:T ⟶ T ⟶ 𝔹].  (IsEqFun(T;eq) ∈ ℙ)


Proof




Definitions occuring in Statement :  eqfun_p: IsEqFun(T;eq) bool: 𝔹 uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eqfun_p: IsEqFun(T;eq) so_lambda: λ2x.t[x] infix_ap: y so_apply: x[s]
Lemmas referenced :  uall_wf uiff_wf assert_wf equal_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :functionIsType,  Error :universeIsType,  Error :inhabitedIsType,  isect_memberEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].    (IsEqFun(T;eq)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-00_29_12
Last ObjectModification: 2018_09_26-AM-11_46_41

Theory : rel_1


Home Index