Nuprl Lemma : rng_times_mssum_r
∀s:DSet. ∀r:Rng. ∀f:|s| ⟶ |r|. ∀u:|r|. ∀a:MSet{s}.  (((Σx ∈ a. f[x]) * u) = (Σx ∈ a. (f[x] * u)) ∈ |r|)
Proof
Definitions occuring in Statement : 
rng_mssum: rng_mssum, 
mset: MSet{s}
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
, 
rng: Rng
, 
rng_times: *
, 
rng_car: |r|
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
top: Top
, 
rng: Rng
, 
infix_ap: x f y
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
Lemmas referenced : 
rng_times_lsum_r, 
set_car_wf, 
list_wf, 
rng_mssum_elim_lemma, 
all_mset_elim, 
equal_wf, 
rng_car_wf, 
rng_times_wf, 
rng_mssum_wf, 
mset_wf, 
sq_stable__equal, 
all_wf, 
rng_lsum_wf, 
rng_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
because_Cache, 
addLevel, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_functionElimination, 
productElimination, 
levelHypothesis, 
functionEquality
Latex:
\mforall{}s:DSet.  \mforall{}r:Rng.  \mforall{}f:|s|  {}\mrightarrow{}  |r|.  \mforall{}u:|r|.  \mforall{}a:MSet\{s\}.    (((\mSigma{}x  \mmember{}  a.  f[x])  *  u)  =  (\mSigma{}x  \mmember{}  a.  (f[x]  *  u)))
Date html generated:
2018_05_22-AM-07_46_07
Last ObjectModification:
2018_05_19-AM-08_30_32
Theory : list_3
Home
Index