Nuprl Lemma : rng_mssum_functionality_wrt_equal

s:DSet. ∀r:Rng. ∀f,f':|s| ⟶ |r|. ∀a,a':MSet{s}.
  ((a a' ∈ MSet{s})  (∀x:|s|. ((↑(x ∈b a))  (f[x] f'[x] ∈ |r|)))  ((Σx ∈ a. f[x]) x ∈ a'. f'[x]) ∈ |r|))


Proof




Definitions occuring in Statement :  rng_mssum: rng_mssum mset_mem: mset_mem mset: MSet{s} assert: b so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] equal: t ∈ T rng: Rng rng_car: |r| dset: DSet set_car: |p|
Definitions unfolded in proof :  rng_mssum: rng_mssum all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B abgrp: AbGrp grp: Group{i} mon: Mon iabmonoid: IAbMonoid imon: IMonoid prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t) rng: Rng dset: DSet
Lemmas referenced :  mset_for_functionality add_grp_of_rng_wf_b subtype_rel_sets grp_sig_wf monoid_p_wf grp_car_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf comm_wf set_wf rng_car_wf set_car_wf assert_wf mset_mem_wf add_grp_of_rng_wf all_wf equal_wf mset_wf rng_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination hypothesis applyEquality instantiate setEquality cumulativity setElimination rename lambdaEquality independent_isectElimination independent_functionElimination functionEquality

Latex:
\mforall{}s:DSet.  \mforall{}r:Rng.  \mforall{}f,f':|s|  {}\mrightarrow{}  |r|.  \mforall{}a,a':MSet\{s\}.
    ((a  =  a')  {}\mRightarrow{}  (\mforall{}x:|s|.  ((\muparrow{}(x  \mmember{}\msubb{}  a))  {}\mRightarrow{}  (f[x]  =  f'[x])))  {}\mRightarrow{}  ((\mSigma{}x  \mmember{}  a.  f[x])  =  (\mSigma{}x  \mmember{}  a'.  f'[x])))



Date html generated: 2016_05_16-AM-08_11_49
Last ObjectModification: 2015_12_28-PM-06_06_27

Theory : list_3


Home Index