Nuprl Lemma : mset_for_functionality

s:DSet. ∀g:IAbMonoid. ∀f,f':|s| ⟶ |g|. ∀a,a':MSet{s}.
  ((a a' ∈ MSet{s})
   (∀x:|s|. ((↑(x ∈b a))  (f[x] f'[x] ∈ |g|)))
   ((msFor{g} x ∈ a. f[x]) (msFor{g} x ∈ a'. f'[x]) ∈ |g|))


Proof




Definitions occuring in Statement :  mset_for: mset_for mset_mem: mset_mem mset: MSet{s} assert: b so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] equal: t ∈ T iabmonoid: IAbMonoid grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] dset: DSet so_lambda: λ2x.t[x] iabmonoid: IAbMonoid imon: IMonoid so_apply: x[s] sq_stable: SqStable(P) mset: MSet{s} quotient: x,y:A//B[x; y] and: P ∧ Q squash: T mset_for: mset_for mset_mem: mset_mem iff: ⇐⇒ Q rev_implies:  Q true: True
Lemmas referenced :  all_wf set_car_wf assert_wf mset_mem_wf equal_wf grp_car_wf mset_wf iabmonoid_wf dset_wf sq_stable__all mset_for_wf sq_stable__equal squash_wf list_wf permr_wf equal-wf-base mem_wf mon_for_functionality_wrt_permr permr_weakening mem_f_wf mem_iff_mem_f true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality sqequalRule lambdaEquality functionEquality dependent_functionElimination applyEquality functionExtensionality because_Cache equalityTransitivity independent_functionElimination pointwiseFunctionalityForEquality pertypeElimination productElimination equalitySymmetry imageMemberEquality baseClosed productEquality imageElimination natural_numberEquality

Latex:
\mforall{}s:DSet.  \mforall{}g:IAbMonoid.  \mforall{}f,f':|s|  {}\mrightarrow{}  |g|.  \mforall{}a,a':MSet\{s\}.
    ((a  =  a')
    {}\mRightarrow{}  (\mforall{}x:|s|.  ((\muparrow{}(x  \mmember{}\msubb{}  a))  {}\mRightarrow{}  (f[x]  =  f'[x])))
    {}\mRightarrow{}  ((msFor\{g\}  x  \mmember{}  a.  f[x])  =  (msFor\{g\}  x  \mmember{}  a'.  f'[x])))



Date html generated: 2017_10_01-AM-09_59_17
Last ObjectModification: 2017_03_03-PM-01_00_09

Theory : mset


Home Index