Nuprl Lemma : mem_iff_mem_f

s:DSet. ∀a:|s|. ∀bs:|s| List.  (↑(a ∈b bs) ⇐⇒ mem_f(|s|;a;bs))


Proof




Definitions occuring in Statement :  mem: a ∈b as mem_f: mem_f(T;a;bs) list: List assert: b all: x:A. B[x] iff: ⇐⇒ Q dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] dset: DSet so_apply: x[s] implies:  Q top: Top mem_f: mem_f(T;a;bs) ycomb: Y so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] assert: b ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q and: P ∧ Q false: False rev_implies:  Q prop: or: P ∨ Q infix_ap: y
Lemmas referenced :  list_induction iff_wf assert_wf mem_wf mem_f_wf set_car_wf mem_nil_lemma istype-void list_ind_nil_lemma mem_cons_lemma list_ind_cons_lemma list_wf dset_wf bor_wf set_eq_wf or_wf equal_wf iff_transitivity iff_weakening_uiff assert_of_bor assert_of_dset_eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination because_Cache sqequalRule lambdaEquality_alt dependent_functionElimination hypothesisEquality hypothesis setElimination rename universeIsType independent_functionElimination isect_memberEquality_alt voidElimination independent_pairFormation productIsType functionIsType inhabitedIsType productElimination unionIsType equalityIsType1 unionElimination inlFormation_alt inrFormation_alt promote_hyp applyEquality

Latex:
\mforall{}s:DSet.  \mforall{}a:|s|.  \mforall{}bs:|s|  List.    (\muparrow{}(a  \mmember{}\msubb{}  bs)  \mLeftarrow{}{}\mRightarrow{}  mem\_f(|s|;a;bs))



Date html generated: 2019_10_16-PM-01_03_24
Last ObjectModification: 2018_10_08-AM-11_21_53

Theory : list_2


Home Index