Nuprl Lemma : rng_mssum_swap

r:Rng. ∀s,s':DSet. ∀f:|s| ⟶ |s'| ⟶ |r|. ∀a:MSet{s}. ∀b:MSet{s'}.
  ((Σx ∈ a. Σy ∈ b. f[x;y]) y ∈ b. Σx ∈ a. f[x;y]) ∈ |r|)


Proof




Definitions occuring in Statement :  rng_mssum: rng_mssum mset: MSet{s} so_apply: x[s1;s2] all: x:A. B[x] function: x:A ⟶ B[x] equal: t ∈ T rng: Rng rng_car: |r| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B abgrp: AbGrp grp: Group{i} mon: Mon iabmonoid: IAbMonoid imon: IMonoid prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a implies:  Q rng_mssum: rng_mssum add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t)
Lemmas referenced :  mset_for_swap add_grp_of_rng_wf_b subtype_rel_sets grp_sig_wf monoid_p_wf grp_car_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf comm_wf set_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis applyEquality sqequalRule instantiate setEquality cumulativity setElimination rename lambdaEquality independent_isectElimination

Latex:
\mforall{}r:Rng.  \mforall{}s,s':DSet.  \mforall{}f:|s|  {}\mrightarrow{}  |s'|  {}\mrightarrow{}  |r|.  \mforall{}a:MSet\{s\}.  \mforall{}b:MSet\{s'\}.
    ((\mSigma{}x  \mmember{}  a.  \mSigma{}y  \mmember{}  b.  f[x;y])  =  (\mSigma{}y  \mmember{}  b.  \mSigma{}x  \mmember{}  a.  f[x;y]))



Date html generated: 2016_05_16-AM-08_11_59
Last ObjectModification: 2015_12_28-PM-06_06_23

Theory : list_3


Home Index