Nuprl Lemma : mset_for_swap

g:IAbMonoid. ∀s,s':DSet. ∀f:|s| ⟶ |s'| ⟶ |g|. ∀a:MSet{s}. ∀b:MSet{s'}.
  ((msFor{g} x ∈ a. msFor{g} y ∈ b. f[x;y]) (msFor{g} y ∈ b. msFor{g} x ∈ a. f[x;y]) ∈ |g|)


Proof




Definitions occuring in Statement :  mset_for: mset_for mset: MSet{s} so_apply: x[s1;s2] all: x:A. B[x] function: x:A ⟶ B[x] equal: t ∈ T iabmonoid: IAbMonoid grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] top: Top so_apply: x[s] iabmonoid: IAbMonoid imon: IMonoid implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop:
Lemmas referenced :  mon_for_swap set_car_wf list_wf mset_for_elim_lemma all_mset_elim equal_wf grp_car_wf mset_for_wf mk_mset_wf mset_wf sq_stable__equal all_wf sq_stable__all mon_for_wf dset_wf iabmonoid_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination setElimination rename hypothesis sqequalRule lambdaEquality applyEquality addLevel isect_memberEquality voidElimination voidEquality allFunctionality because_Cache independent_functionElimination productElimination levelHypothesis allLevelFunctionality functionEquality

Latex:
\mforall{}g:IAbMonoid.  \mforall{}s,s':DSet.  \mforall{}f:|s|  {}\mrightarrow{}  |s'|  {}\mrightarrow{}  |g|.  \mforall{}a:MSet\{s\}.  \mforall{}b:MSet\{s'\}.
    ((msFor\{g\}  x  \mmember{}  a.  msFor\{g\}  y  \mmember{}  b.  f[x;y])  =  (msFor\{g\}  y  \mmember{}  b.  msFor\{g\}  x  \mmember{}  a.  f[x;y]))



Date html generated: 2016_05_16-AM-07_47_57
Last ObjectModification: 2015_12_28-PM-06_03_24

Theory : mset


Home Index