Nuprl Lemma : mon_for_swap

g:IAbMonoid. ∀A,B:Type. ∀f:A ⟶ B ⟶ |g|. ∀as:A List. ∀bs:B List.
  ((For{g} x ∈ as. For{g} y ∈ bs. f[x;y]) (For{g} y ∈ bs. For{g} x ∈ as. f[x;y]) ∈ |g|)


Proof




Definitions occuring in Statement :  mon_for: For{g} x ∈ as. f[x] list: List so_apply: x[s1;s2] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T iabmonoid: IAbMonoid grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] iabmonoid: IAbMonoid imon: IMonoid so_apply: x[s1;s2] so_apply: x[s] implies:  Q top: Top squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q infix_ap: y
Lemmas referenced :  list_induction all_wf list_wf equal_wf grp_car_wf mon_for_wf mon_for_nil_lemma squash_wf true_wf grp_id_wf mon_for_of_id iff_weakening_equal mon_for_cons_lemma iabmonoid_wf grp_op_wf infix_ap_wf mon_for_of_op
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis setElimination rename because_Cache dependent_functionElimination applyEquality functionExtensionality independent_functionElimination isect_memberEquality voidElimination voidEquality imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination functionEquality

Latex:
\mforall{}g:IAbMonoid.  \mforall{}A,B:Type.  \mforall{}f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  |g|.  \mforall{}as:A  List.  \mforall{}bs:B  List.
    ((For\{g\}  x  \mmember{}  as.  For\{g\}  y  \mmember{}  bs.  f[x;y])  =  (For\{g\}  y  \mmember{}  bs.  For\{g\}  x  \mmember{}  as.  f[x;y]))



Date html generated: 2017_10_01-AM-09_55_31
Last ObjectModification: 2017_03_03-PM-00_50_33

Theory : list_2


Home Index