Nuprl Lemma : mon_for_of_id
∀g:IAbMonoid. ∀A:Type. ∀as:A List.  ((For{g} x ∈ as. e) = e ∈ |g|)
Proof
Definitions occuring in Statement : 
mon_for: For{g} x ∈ as. f[x]
, 
list: T List
, 
all: ∀x:A. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
iabmonoid: IAbMonoid
, 
grp_id: e
, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
top: Top
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
infix_ap: x f y
Lemmas referenced : 
list_induction, 
equal_wf, 
grp_car_wf, 
mon_for_wf, 
grp_id_wf, 
list_wf, 
mon_for_nil_lemma, 
mon_for_cons_lemma, 
squash_wf, 
true_wf, 
abmonoid_comm, 
iff_weakening_equal, 
grp_op_wf, 
mon_ident, 
iabmonoid_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
hypothesis, 
dependent_functionElimination, 
cumulativity, 
because_Cache, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
equalityUniverse, 
levelHypothesis, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}g:IAbMonoid.  \mforall{}A:Type.  \mforall{}as:A  List.    ((For\{g\}  x  \mmember{}  as.  e)  =  e)
Date html generated:
2017_10_01-AM-09_55_27
Last ObjectModification:
2017_03_03-PM-00_50_25
Theory : list_2
Home
Index