Nuprl Lemma : mon_for_of_id

g:IAbMonoid. ∀A:Type. ∀as:A List.  ((For{g} x ∈ as. e) e ∈ |g|)


Proof




Definitions occuring in Statement :  mon_for: For{g} x ∈ as. f[x] list: List all: x:A. B[x] universe: Type equal: t ∈ T iabmonoid: IAbMonoid grp_id: e grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] iabmonoid: IAbMonoid imon: IMonoid so_apply: x[s] implies:  Q top: Top squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q infix_ap: y
Lemmas referenced :  list_induction equal_wf grp_car_wf mon_for_wf grp_id_wf list_wf mon_for_nil_lemma mon_for_cons_lemma squash_wf true_wf abmonoid_comm iff_weakening_equal grp_op_wf mon_ident iabmonoid_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality setElimination rename hypothesis dependent_functionElimination cumulativity because_Cache independent_functionElimination isect_memberEquality voidElimination voidEquality applyEquality imageElimination equalityTransitivity equalitySymmetry equalityUniverse levelHypothesis natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination

Latex:
\mforall{}g:IAbMonoid.  \mforall{}A:Type.  \mforall{}as:A  List.    ((For\{g\}  x  \mmember{}  as.  e)  =  e)



Date html generated: 2017_10_01-AM-09_55_27
Last ObjectModification: 2017_03_03-PM-00_50_25

Theory : list_2


Home Index