Nuprl Lemma : mk_mset_wf

s:DSet. ∀as:|s| List.  (mk_mset(as) ∈ MSet{s})


Proof




Definitions occuring in Statement :  mk_mset: mk_mset(as) mset: MSet{s} list: List all: x:A. B[x] member: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet mk_mset: mk_mset(as) mset: MSet{s} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a implies:  Q
Lemmas referenced :  list_wf set_car_wf dset_wf quotient-member-eq permr_wf permr_equiv_rel permr_reflex
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution hypothesis lemma_by_obid isectElimination thin setElimination rename hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination independent_isectElimination because_Cache independent_functionElimination

Latex:
\mforall{}s:DSet.  \mforall{}as:|s|  List.    (mk\_mset(as)  \mmember{}  MSet\{s\})



Date html generated: 2016_05_16-AM-07_46_17
Last ObjectModification: 2015_12_28-PM-06_04_04

Theory : mset


Home Index