Nuprl Lemma : mod_action_mssum_r

s:DSet. ∀r:Rng. ∀m:r-Module. ∀f:|s| ⟶ |r|. ∀u:m.car. ∀a:MSet{s}.
  (((Σx ∈ a. f[x]) m.act u) x ∈ a. (f[x] m.act u)) ∈ m.car)


Proof




Definitions occuring in Statement :  mod_mssum: mod_mssum rng_mssum: rng_mssum mset: MSet{s} module: A-Module alg_act: a.act alg_car: a.car infix_ap: y so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] equal: t ∈ T rng: Rng rng_car: |r| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] mod_mssum: mod_mssum rng_mssum: rng_mssum grp_of_module: m↓grp add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t) rng_of_alg: a↓rg rng_car: |r| member: t ∈ T uall: [x:A]. B[x] rng: Rng module: A-Module dset: DSet infix_ap: y subtype_rel: A ⊆B abgrp: AbGrp grp: Group{i} mon: Mon iabmonoid: IAbMonoid imon: IMonoid prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a implies:  Q tlambda: λx:T. b[x] monoid_hom: MonHom(M1,M2)
Lemmas referenced :  mset_wf alg_car_wf rng_car_wf set_car_wf module_wf rng_wf dset_wf dist_hom_over_mset_for add_grp_of_rng_wf_b subtype_rel_sets grp_sig_wf monoid_p_wf grp_car_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf comm_wf set_wf grp_of_module_wf2 module_act_grp_hom_l alg_act_wf add_grp_of_rng_wf monoid_hom_p_wf grp_of_module_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule hypothesis lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination setElimination rename functionEquality applyEquality instantiate setEquality cumulativity lambdaEquality independent_isectElimination dependent_set_memberEquality

Latex:
\mforall{}s:DSet.  \mforall{}r:Rng.  \mforall{}m:r-Module.  \mforall{}f:|s|  {}\mrightarrow{}  |r|.  \mforall{}u:m.car.  \mforall{}a:MSet\{s\}.
    (((\mSigma{}x  \mmember{}  a.  f[x])  m.act  u)  =  (\mSigma{}m  x  \mmember{}  a.  (f[x]  m.act  u)))



Date html generated: 2016_05_16-AM-08_12_22
Last ObjectModification: 2015_12_28-PM-06_06_38

Theory : list_3


Home Index