Nuprl Lemma : module_act_grp_hom_l

A:Rng. ∀m:A-Module. ∀u:m.car.  IsMonHom{A↓+gp,m↓grp}(λa:|A|. m.act u)


Proof




Definitions occuring in Statement :  module: A-Module grp_of_module: m↓grp alg_act: a.act alg_car: a.car tlambda: λx:T. b[x] all: x:A. B[x] apply: a add_grp_of_rng: r↓+gp rng: Rng rng_car: |r| monoid_hom_p: IsMonHom{M1,M2}(f)
Definitions unfolded in proof :  all: x:A. B[x] monoid_hom_p: IsMonHom{M1,M2}(f) and: P ∧ Q fun_thru_2op: FunThru2op(A;B;opa;opb;f) uall: [x:A]. B[x] member: t ∈ T grp_of_module: m↓grp add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t) tlambda: λx:T. b[x] grp_op: * pi2: snd(t) rng_of_alg: a↓rg rng_car: |r| rng_plus: +r rng: Rng grp_id: e rng_zero: 0 module: A-Module infix_ap: y
Lemmas referenced :  grp_car_wf add_grp_of_rng_wf alg_car_wf rng_car_wf module_wf rng_wf module_act_plus module_act_zero_l
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation isect_memberFormation introduction cut sqequalRule hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality isect_memberEquality axiomEquality because_Cache dependent_functionElimination productElimination

Latex:
\mforall{}A:Rng.  \mforall{}m:A-Module.  \mforall{}u:m.car.    IsMonHom\{A\mdownarrow{}+gp,m\mdownarrow{}grp\}(\mlambda{}a:|A|.  m.act  a  u)



Date html generated: 2016_05_16-AM-07_26_59
Last ObjectModification: 2015_12_28-PM-05_07_45

Theory : algebras_1


Home Index