Nuprl Lemma : module_wf

A:RngSig. (A-Module ∈ 𝕌')


Proof




Definitions occuring in Statement :  module: A-Module all: x:A. B[x] member: t ∈ T universe: Type rng_sig: RngSig
Definitions unfolded in proof :  module: A-Module all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] and: P ∧ Q subtype_rel: A ⊆B prop:
Lemmas referenced :  algebra_sig_wf rng_car_wf group_p_wf alg_car_wf alg_plus_wf alg_zero_wf alg_minus_wf comm_wf action_p_wf rng_times_wf rng_one_wf alg_act_wf bilinear_p_wf rng_plus_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut setEquality lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis productEquality because_Cache applyEquality lambdaEquality cumulativity universeEquality

Latex:
\mforall{}A:RngSig.  (A-Module  \mmember{}  \mBbbU{}')



Date html generated: 2016_05_16-AM-07_26_25
Last ObjectModification: 2015_12_28-PM-05_08_26

Theory : algebras_1


Home Index