Nuprl Lemma : group_p_wf
∀[T:Type]. ∀[op:T ⟶ T ⟶ T]. ∀[id:T]. ∀[inv:T ⟶ T].  (IsGroup(T;op;id;inv) ∈ ℙ)
Proof
Definitions occuring in Statement : 
group_p: IsGroup(T;op;id;inv)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
group_p: IsGroup(T;op;id;inv)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
and_wf, 
monoid_p_wf, 
inverse_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[op:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].  \mforall{}[id:T].  \mforall{}[inv:T  {}\mrightarrow{}  T].    (IsGroup(T;op;id;inv)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-00_06_09
Last ObjectModification:
2015_12_26-PM-11_47_37
Theory : groups_1
Home
Index