Nuprl Lemma : module_act_zero_l

A:Rng. ∀m:A-Module. ∀u:m.car.  ((0 m.act u) m.zero ∈ m.car)


Proof




Definitions occuring in Statement :  module: A-Module alg_act: a.act alg_zero: a.zero alg_car: a.car infix_ap: y all: x:A. B[x] equal: t ∈ T rng: Rng rng_zero: 0
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] rng: Rng module: A-Module squash: T prop: infix_ap: y and: P ∧ Q true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q abgrp: AbGrp grp: Group{i} mon: Mon imon: IMonoid grp_of_module: m↓grp add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t) rng_of_alg: a↓rg rng_car: |r| grp_op: * pi2: snd(t) rng_plus: +r grp_id: e rng_zero: 0 uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  infix_ap_wf rng_car_wf alg_car_wf alg_act_wf rng_zero_wf module_wf rng_wf equal_wf squash_wf true_wf rng_plus_zero iff_weakening_equal module_act_plus grp_of_module_wf2 grp_subtype_igrp abgrp_subtype_grp subtype_rel_transitivity abgrp_wf grp_wf igrp_wf grp_id_wf grp_of_module_wf grp_car_wf grp_sig_wf monoid_p_wf grp_op_wf inverse_wf grp_inv_wf comm_wf grp_eq_shift_right mon_ident grp_inv_thru_op grp_inv_assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis dependent_functionElimination because_Cache applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality productElimination natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination independent_functionElimination instantiate setEquality cumulativity functionEquality

Latex:
\mforall{}A:Rng.  \mforall{}m:A-Module.  \mforall{}u:m.car.    ((0  m.act  u)  =  m.zero)



Date html generated: 2017_10_01-AM-09_51_44
Last ObjectModification: 2017_03_03-PM-00_46_42

Theory : algebras_1


Home Index