Nuprl Lemma : grp_subtype_igrp
Group{i} ⊆r IGroup
Proof
Definitions occuring in Statement : 
grp: Group{i}
, 
igrp: IGroup
, 
subtype_rel: A ⊆r B
Definitions unfolded in proof : 
grp: Group{i}
, 
mon: Mon
, 
igrp: IGroup
, 
imon: IMonoid
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
subtype_rel_self, 
grp_sig_wf, 
monoid_p_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
inverse_wf, 
grp_inv_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
hypothesis, 
cumulativity, 
hypothesisEquality, 
setElimination, 
rename
Latex:
Group\{i\}  \msubseteq{}r  IGroup
Date html generated:
2016_05_15-PM-00_08_38
Last ObjectModification:
2015_12_26-PM-11_45_45
Theory : groups_1
Home
Index