Nuprl Lemma : grp_subtype_igrp

Group{i} ⊆IGroup


Proof




Definitions occuring in Statement :  grp: Group{i} igrp: IGroup subtype_rel: A ⊆B
Definitions unfolded in proof :  grp: Group{i} mon: Mon igrp: IGroup imon: IMonoid uall: [x:A]. B[x] member: t ∈ T prop:
Lemmas referenced :  subtype_rel_self grp_sig_wf monoid_p_wf grp_car_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalTransitivity computationStep sqequalReflexivity cut instantiate lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesis cumulativity hypothesisEquality setElimination rename

Latex:
Group\{i\}  \msubseteq{}r  IGroup



Date html generated: 2016_05_15-PM-00_08_38
Last ObjectModification: 2015_12_26-PM-11_45_45

Theory : groups_1


Home Index