Nuprl Lemma : grp_of_module_wf2

a:RngSig. ∀m:a-Module.  (m↓grp ∈ AbGrp)


Proof




Definitions occuring in Statement :  module: A-Module grp_of_module: m↓grp all: x:A. B[x] member: t ∈ T rng_sig: RngSig abgrp: AbGrp
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T module: A-Module and: P ∧ Q uall: [x:A]. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B prop: so_apply: x[s] group_p: IsGroup(T;op;id;inv) monoid_p: IsMonoid(T;op;id) abgrp: AbGrp grp: Group{i} mon: Mon grp_of_module: m↓grp add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) grp_id: e rng_of_alg: a↓rg rng_car: |r| rng_plus: +r rng_zero: 0 grp_inv: ~ rng_minus: -r
Lemmas referenced :  module_wf rng_sig_wf module_properties set_wf algebra_sig_wf rng_car_wf group_p_wf alg_car_wf alg_plus_wf alg_zero_wf alg_minus_wf comm_wf action_p_wf rng_times_wf rng_one_wf alg_act_wf bilinear_p_wf rng_plus_wf grp_of_module_wf monoid_p_wf grp_car_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution hypothesis lemma_by_obid dependent_functionElimination thin hypothesisEquality applyEquality lambdaEquality setElimination rename productElimination instantiate isectElimination sqequalRule productEquality because_Cache cumulativity universeEquality dependent_set_memberEquality independent_pairFormation

Latex:
\mforall{}a:RngSig.  \mforall{}m:a-Module.    (m\mdownarrow{}grp  \mmember{}  AbGrp)



Date html generated: 2016_05_16-AM-07_26_43
Last ObjectModification: 2015_12_28-PM-05_08_31

Theory : algebras_1


Home Index