Nuprl Lemma : module_properties
∀A:RngSig. ∀m:A-Module.
  (IsGroup(m.car;m.plus;m.zero;m.minus)
  ∧ Comm(m.car;m.plus)
  ∧ IsAction(|A|;*;1;m.car;m.act)
  ∧ IsBilinear(|A|;m.car;m.car;+A;m.plus;m.plus;m.act))
Proof
Definitions occuring in Statement : 
module: A-Module
, 
alg_act: a.act
, 
alg_minus: a.minus
, 
alg_zero: a.zero
, 
alg_plus: a.plus
, 
alg_car: a.car
, 
comm: Comm(T;op)
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
rng_one: 1
, 
rng_times: *
, 
rng_plus: +r
, 
rng_car: |r|
, 
rng_sig: RngSig
, 
group_p: IsGroup(T;op;id;inv)
, 
action_p: IsAction(A;x;e;S;f)
, 
bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f)
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
module: A-Module
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
Lemmas referenced : 
sq_stable__bilinear_p, 
rng_plus_wf, 
rng_sig_wf, 
module_wf, 
alg_act_wf, 
rng_one_wf, 
rng_times_wf, 
sq_stable__action_p, 
sq_stable__comm, 
alg_minus_wf, 
alg_zero_wf, 
alg_plus_wf, 
rng_car_wf, 
alg_car_wf, 
sq_stable__group_p
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
isectElimination, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
introduction, 
productElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_pairFormation, 
because_Cache
Latex:
\mforall{}A:RngSig.  \mforall{}m:A-Module.
    (IsGroup(m.car;m.plus;m.zero;m.minus)
    \mwedge{}  Comm(m.car;m.plus)
    \mwedge{}  IsAction(|A|;*;1;m.car;m.act)
    \mwedge{}  IsBilinear(|A|;m.car;m.car;+A;m.plus;m.plus;m.act))
Date html generated:
2016_05_16-AM-07_26_29
Last ObjectModification:
2016_01_16-PM-09_59_59
Theory : algebras_1
Home
Index