Nuprl Lemma : module_properties

A:RngSig. ∀m:A-Module.
  (IsGroup(m.car;m.plus;m.zero;m.minus)
  ∧ Comm(m.car;m.plus)
  ∧ IsAction(|A|;*;1;m.car;m.act)
  ∧ IsBilinear(|A|;m.car;m.car;+A;m.plus;m.plus;m.act))


Proof




Definitions occuring in Statement :  module: A-Module alg_act: a.act alg_minus: a.minus alg_zero: a.zero alg_plus: a.plus alg_car: a.car comm: Comm(T;op) all: x:A. B[x] and: P ∧ Q rng_one: 1 rng_times: * rng_plus: +r rng_car: |r| rng_sig: RngSig group_p: IsGroup(T;op;id;inv) action_p: IsAction(A;x;e;S;f) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f)
Definitions unfolded in proof :  all: x:A. B[x] and: P ∧ Q cand: c∧ B module: A-Module uall: [x:A]. B[x] member: t ∈ T sq_stable: SqStable(P) implies:  Q squash: T
Lemmas referenced :  sq_stable__bilinear_p rng_plus_wf rng_sig_wf module_wf alg_act_wf rng_one_wf rng_times_wf sq_stable__action_p sq_stable__comm alg_minus_wf alg_zero_wf alg_plus_wf rng_car_wf alg_car_wf sq_stable__group_p
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution setElimination thin rename lemma_by_obid isectElimination dependent_functionElimination hypothesisEquality hypothesis independent_functionElimination introduction productElimination sqequalRule imageMemberEquality baseClosed imageElimination independent_pairFormation because_Cache

Latex:
\mforall{}A:RngSig.  \mforall{}m:A-Module.
    (IsGroup(m.car;m.plus;m.zero;m.minus)
    \mwedge{}  Comm(m.car;m.plus)
    \mwedge{}  IsAction(|A|;*;1;m.car;m.act)
    \mwedge{}  IsBilinear(|A|;m.car;m.car;+A;m.plus;m.plus;m.act))



Date html generated: 2016_05_16-AM-07_26_29
Last ObjectModification: 2016_01_16-PM-09_59_59

Theory : algebras_1


Home Index