Nuprl Lemma : sq_stable__bilinear_p

[A,B,C:Type]. ∀[+a:A ⟶ A ⟶ A]. ∀[+b:B ⟶ B ⟶ B]. ∀[+c:C ⟶ C ⟶ C]. ∀[f:A ⟶ B ⟶ C].
  SqStable(IsBilinear(A;B;C;+a;+b;+c;f))


Proof




Definitions occuring in Statement :  bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) sq_stable: SqStable(P) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] infix_ap: y so_apply: x[s] prop: implies:  Q sq_stable: SqStable(P) and: P ∧ Q
Lemmas referenced :  sq_stable__and uall_wf equal_wf infix_ap_wf sq_stable__uall sq_stable__equal squash_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis isect_memberEquality cumulativity because_Cache independent_functionElimination dependent_functionElimination axiomEquality lambdaFormation productElimination independent_pairEquality productEquality functionEquality universeEquality

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[+a:A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].  \mforall{}[+b:B  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[+c:C  {}\mrightarrow{}  C  {}\mrightarrow{}  C].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].
    SqStable(IsBilinear(A;B;C;+a;+b;+c;f))



Date html generated: 2016_05_15-PM-00_02_30
Last ObjectModification: 2015_12_26-PM-11_26_26

Theory : gen_algebra_1


Home Index