Nuprl Lemma : sq_stable__bilinear_p
∀[A,B,C:Type]. ∀[+a:A ⟶ A ⟶ A]. ∀[+b:B ⟶ B ⟶ B]. ∀[+c:C ⟶ C ⟶ C]. ∀[f:A ⟶ B ⟶ C].
  SqStable(IsBilinear(A;B;C;+a;+b;+c;f))
Proof
Definitions occuring in Statement : 
bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f)
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
and: P ∧ Q
Lemmas referenced : 
sq_stable__and, 
uall_wf, 
equal_wf, 
infix_ap_wf, 
sq_stable__uall, 
sq_stable__equal, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
isect_memberEquality, 
cumulativity, 
because_Cache, 
independent_functionElimination, 
dependent_functionElimination, 
axiomEquality, 
lambdaFormation, 
productElimination, 
independent_pairEquality, 
productEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[+a:A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].  \mforall{}[+b:B  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[+c:C  {}\mrightarrow{}  C  {}\mrightarrow{}  C].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].
    SqStable(IsBilinear(A;B;C;+a;+b;+c;f))
Date html generated:
2016_05_15-PM-00_02_30
Last ObjectModification:
2015_12_26-PM-11_26_26
Theory : gen_algebra_1
Home
Index