Nuprl Lemma : sq_stable__group_p

[T:Type]. ∀[op:T ⟶ T ⟶ T]. ∀[id:T]. ∀[inv:T ⟶ T].  SqStable(IsGroup(T;op;id;inv))


Proof




Definitions occuring in Statement :  group_p: IsGroup(T;op;id;inv) sq_stable: SqStable(P) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  group_p: IsGroup(T;op;id;inv) uall: [x:A]. B[x] member: t ∈ T prop: implies:  Q sq_stable: SqStable(P) and: P ∧ Q monoid_p: IsMonoid(T;op;id) assoc: Assoc(T;op) ident: Ident(T;op;id) inverse: Inverse(T;op;id;inv)
Lemmas referenced :  sq_stable__and monoid_p_wf inverse_wf sq_stable__monoid_p sq_stable__inverse squash_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis isect_memberEquality independent_functionElimination lambdaFormation because_Cache lambdaEquality dependent_functionElimination productElimination independent_pairEquality axiomEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[op:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].  \mforall{}[id:T].  \mforall{}[inv:T  {}\mrightarrow{}  T].    SqStable(IsGroup(T;op;id;inv))



Date html generated: 2016_05_15-PM-00_06_10
Last ObjectModification: 2015_12_26-PM-11_47_39

Theory : groups_1


Home Index