Nuprl Lemma : sq_stable__group_p
∀[T:Type]. ∀[op:T ⟶ T ⟶ T]. ∀[id:T]. ∀[inv:T ⟶ T].  SqStable(IsGroup(T;op;id;inv))
Proof
Definitions occuring in Statement : 
group_p: IsGroup(T;op;id;inv)
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
group_p: IsGroup(T;op;id;inv)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
and: P ∧ Q
, 
monoid_p: IsMonoid(T;op;id)
, 
assoc: Assoc(T;op)
, 
ident: Ident(T;op;id)
, 
inverse: Inverse(T;op;id;inv)
Lemmas referenced : 
sq_stable__and, 
monoid_p_wf, 
inverse_wf, 
sq_stable__monoid_p, 
sq_stable__inverse, 
squash_wf, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isect_memberEquality, 
independent_functionElimination, 
lambdaFormation, 
because_Cache, 
lambdaEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[op:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].  \mforall{}[id:T].  \mforall{}[inv:T  {}\mrightarrow{}  T].    SqStable(IsGroup(T;op;id;inv))
Date html generated:
2016_05_15-PM-00_06_10
Last ObjectModification:
2015_12_26-PM-11_47_39
Theory : groups_1
Home
Index